The Meaning of Q

For the impedance $Z=R+j X, \mathbf{V}$ is the (peak) phasor across the entire impedance, and \mathbf{V}_{x} is the voltage across the reactive part. The complex power delivered to Z is:

$$
\mathrm{S}=\frac{1}{2} \mathrm{VI}^{*}=\frac{1}{2}(Z \mathrm{I}) \mathrm{I}^{*}=\frac{1}{2}|I|^{2} Z=\frac{1}{2}|I|^{2} R+j \frac{1}{2}|I|^{2} X
$$

Thus,

$$
P=\operatorname{Re}(\mathbf{S})=\frac{1}{2} I_{m}^{2} R \quad \text { and } \quad Q=\operatorname{Im}(\mathbf{S})=\frac{1}{2} I_{m}^{2} X
$$

Where I_{m} is the peak value of the load current. We already know that P is the average power consumed by the load, so now we ask the question: what kind of power does Q represent?

Since Q is clearly associated with the reactive load, let's look at the instantaneous power $p_{x}(t)$ delivered to the reactive part of the load. Since $\mathbf{V}_{x}=j X I=j X I_{m} \angle \theta_{I}, \theta_{I}$ are the (peak) phase of the load current. This gives us,

$$
v_{x}(t)=X I_{m} \cos \left(\omega t+\theta_{I} \pm 90^{\circ}\right)
$$

Where the $+\operatorname{sign}$ is for when $X>0$ (inductive) and the $-\operatorname{sign}$ is for when $X<0$ (capacitive).
Hence, $p_{x}(t)$ is

$$
\begin{aligned}
p_{x}(t) & =v_{x}(t) i(t)=X I_{m}^{2} \cos \left(\omega t+\theta_{m}\right) \cos \left(\omega t+\theta_{m} \pm 90^{\circ}\right) \\
& =\frac{X I_{m}^{2}}{2}\left[\cos \left(90^{\circ}\right)+\cos \left(2 \omega t+2 \theta_{m} \pm 180^{\circ}\right)\right]=\frac{X I_{m}^{2}}{2} \cos \left(2 \omega t+2 \theta_{m} \pm 180^{\circ}\right)
\end{aligned}
$$

Thus, the peak value of $p_{x}(t)$ is $\frac{X I_{m}^{2}}{2}$, which is the same as $Q!$
Hence, the quadrature power Q is the peak power delivered to (and then supplied by) the reactive part of the load.

